Sequential

class Sequential(layers: Layer) : GraphTrainableModel

Sequential model groups a linear stack of layers into a TensorFlow Model. Also, it provides training and inference features on this model.

Constructors

Sequential
Link copied to clipboard
fun Sequential(vararg layers: Layer)

Creates a Sequential group with inputLayer and layers.

Types

Companion
Link copied to clipboard
object Companion

Functions

close
Link copied to clipboard
open override fun close()

Closes internal resources: session and kGraph.

compile
Link copied to clipboard
open override fun compile(optimizer: Optimizer, loss: LossFunction, metrics: List<Metric>)
open override fun compile(optimizer: Optimizer, loss: LossFunction, metric: Metric)
open override fun compile(optimizer: Optimizer, loss: LossFunction, metric: Metrics)
open override fun compile(optimizer: Optimizer, loss: Losses, metric: Metric)
open override fun compile(optimizer: Optimizer, loss: Losses, metric: Metrics)

Configures the model for training.

copy
Link copied to clipboard
fun copy(saveOptimizerState: Boolean = false, copyWeights: Boolean = true): Sequential

Returns a copy of this model.

open override fun copy(copiedModelName: String?, saveOptimizerState: Boolean, copyWeights: Boolean): TensorFlowInferenceModel

Creates a copy.

evaluate
Link copied to clipboard
fun evaluate(dataset: Dataset, metric: Metrics): Double

Evaluates dataset via metric.

open override fun evaluate(dataset: Dataset, batchSize: Int, callbacks: List<Callback>): EvaluationResult
fun evaluate(dataset: Dataset, batchSize: Int = 256, callback: Callback): EvaluationResult

Returns the metrics and loss values for the model in test (evaluation) mode.

fit
Link copied to clipboard
open override fun fit(dataset: Dataset, epochs: Int, batchSize: Int, callbacks: List<Callback>): TrainingHistory
open override fun fit(trainingDataset: Dataset, validationDataset: Dataset, epochs: Int, trainBatchSize: Int, validationBatchSize: Int, callbacks: List<Callback>): TrainingHistory

Trains the model for a fixed number of epochs (iterations over a dataset).

fun fit(dataset: Dataset, epochs: Int = 5, batchSize: Int = 32, callback: Callback): TrainingHistory
fun fit(trainingDataset: Dataset, validationDataset: Dataset, epochs: Int = 5, trainBatchSize: Int = 32, validationBatchSize: Int = 256, callback: Callback): TrainingHistory

Trains the model for a fixed number of epochs (iterations over a dataset).

fun fit(dataset: OnHeapDataset, validationRate: Double, epochs: Int, trainBatchSize: Int, validationBatchSize: Int, callbacks: List<Callback> = listOf()): TrainingHistory
fun fit(dataset: OnHeapDataset, validationRate: Double, epochs: Int, trainBatchSize: Int, validationBatchSize: Int, callback: Callback): TrainingHistory

Trains the model for a fixed number of epochs (iterations on a dataset).

getLayer
Link copied to clipboard
infix fun getLayer(layerName: String): Layer

Return layer by layerName.

graphToString
Link copied to clipboard
fun graphToString(): String

Forms the graph description in string format.

init
Link copied to clipboard
fun init()

Initializes kGraph variables.

input
Link copied to clipboard
fun input(inputOp: Input)

Chain-like setter to set up inputOp.

kGraph
Link copied to clipboard
fun kGraph(): KGraph

Returns KGraph.

loadWeights
Link copied to clipboard
open override fun loadWeights(modelDirectory: File, loadOptimizerState: Boolean)

Loads variable data from .txt files.

output
Link copied to clipboard
fun output(outputOp: Output)

Chain-like setter to set up outputOp.

predict
Link copied to clipboard
open override fun predict(inputData: FloatArray): Int

Generates output prediction for the input sample.

fun predict(dataset: Dataset): List<Int>

Predicts labels for all observation in dataset.

open override fun predict(inputData: FloatArray, predictionTensorName: String): Int

Generates output prediction for the input sample using output of the predictionTensorName tensor.

open override fun predict(dataset: Dataset, batchSize: Int, callbacks: List<Callback>): IntArray
fun predict(dataset: Dataset, batchSize: Int, callback: Callback): IntArray

Generates output predictions for the input samples.

predictAndGetActivations
Link copied to clipboard
open override fun predictAndGetActivations(inputData: FloatArray, predictionTensorName: String): Pair<Int, List<*>>

Predicts and returns not only prediction but list of activations values from intermediate model layers (for visualisation or debugging purposes).

predictSoftly
Link copied to clipboard
open override fun predictSoftly(inputData: FloatArray, predictionTensorName: String): FloatArray

Predicts vector of probabilities instead of specific class in predict method.

open override fun predictSoftly(dataset: Dataset, batchSize: Int, callbacks: List<Callback>): Array<FloatArray>

Generates output predictions for the input samples. Each prediction is a vector of probabilities instead of specific class in predict method.

fun predictSoftly(dataset: Dataset, batchSize: Int, callback: Callback): Array<FloatArray>

Generates output predictions for the input samples. Each prediction is a vector of probabilities instead of specific class in predict method.

reset
Link copied to clipboard
fun reset()

It ignores that model is initialized already and call initializers under the hood to re-initialize kGraph variables.

reshape
Link copied to clipboard
open override fun reshape(vararg dims: Long)

Chain-like setter to set up input shape.

save
Link copied to clipboard
open override fun save(modelDirectory: File, savingFormat: SavingFormat, saveOptimizerState: Boolean, writingMode: WritingMode)

Saves the model as graph and weights.

summary
Link copied to clipboard
open override fun summary(): ModelSummary

Returns model summary.

toString
Link copied to clipboard
open override fun toString(): String

Properties

inputDimensions
Link copied to clipboard
open override val inputDimensions: LongArray

Returns input dimensions in order HWC (height, width, channels)

inputLayer
Link copied to clipboard
val inputLayer: Input

First layer that is responsible for the input shape of the Neural Network.

isBuiltForForwardMode
Link copied to clipboard
var isBuiltForForwardMode: Boolean = false

Is true when model is ready for forward mode.

isModelCompiled
Link copied to clipboard
var isModelCompiled: Boolean = false

Is true when model is compiled.

isModelInitialized
Link copied to clipboard
var isModelInitialized: Boolean = false

Is true when model is initialized.

isOptimizerVariableInitialized
Link copied to clipboard
var isOptimizerVariableInitialized: Boolean = false

Is true when model optimizer variables are initialized.

kGraph
Link copied to clipboard
lateinit var kGraph: KGraph

TensorFlow wrapped computational graph.

layers
Link copied to clipboard
var layers: List<Layer>

The layers to describe the model design. Main part of the internal state of the model.

logger
Link copied to clipboard
val logger: KLogger

Logger for the model.

loss
Link copied to clipboard
var loss: LossFunction

Loss function.

name
Link copied to clipboard
var name: String? = null

Model name.

numberOfClasses
Link copied to clipboard
var numberOfClasses: Long

Number of classes for classification tasks. -1 is a default value for regression tasks.

shape
Link copied to clipboard
lateinit var shape: LongArray

Data shape for prediction.

stopTraining
Link copied to clipboard
var stopTraining: Boolean = false

Special flag for callbacks.