Conv3DTranspose

class Conv3DTranspose(filters: Int, kernelSize: IntArray, strides: IntArray, dilations: IntArray, activation: Activations, kernelInitializer: Initializer, biasInitializer: Initializer, kernelRegularizer: Regularizer?, biasRegularizer: Regularizer?, activityRegularizer: Regularizer?, padding: ConvPadding, useBias: Boolean, name: String) : ConvTranspose, NoGradients

3D convolution transpose layer.

This is an operation going in the opposite direction of a normal convolution: it transforms a tensor shaped like an output of some convolution into tensor that has the shape of the input.

This layer expects input data of size (N, D, H, W, C) where

N - batch size
D - depth
H - height
W - width
C - number of channels

Note: providing explicit output padding is currently not supported. Dilation values greater than 1 are not supported on cpu.

Since

0.4

Parameters

filters

dimensionality of the output space (i.e. the number of filters in the convolution)

activation

activation function

kernelInitializer

initializer for the kernel

biasInitializer

initializer for the bias

kernelRegularizer

regularizer for the kernel

biasRegularizer

regularizer for the bias

activityRegularizer

regularizer function applied to the output of the layer

padding

type of padding to use

useBias

a flag that specifies if the bias should be used

name

custom layer name

Constructors

Conv3DTranspose
Link copied to clipboard
fun Conv3DTranspose(filters: Int = 3, kernelSize: Int = 3, strides: Int = 1, dilations: Int = 1, activation: Activations = Activations.Relu, kernelInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), kernelRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, padding: ConvPadding = ConvPadding.SAME, useBias: Boolean = true, name: String = "")
Conv3DTranspose
Link copied to clipboard
fun Conv3DTranspose(filters: Int = 3, kernelSize: IntArray = intArrayOf(3, 3, 3), strides: IntArray = intArrayOf(1, 1, 1, 1, 1), dilations: IntArray = intArrayOf(1, 1, 1, 1, 1), activation: Activations = Activations.Relu, kernelInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), kernelRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, padding: ConvPadding = ConvPadding.SAME, useBias: Boolean = true, name: String = "")

Functions

build
Link copied to clipboard
open override fun build(tf: Ops, inputShape: Shape)

Extend this function to define variables in layer.

buildFromInboundLayers
Link copied to clipboard
fun buildFromInboundLayers(tf: Ops)

Extend this function to define variables in layer.

computeOutputShape
Link copied to clipboard
open override fun computeOutputShape(inputShape: Shape): Shape

Computes output shape, based on inputShape and Layer type.

computeOutputShapeFromInboundLayers
Link copied to clipboard
open fun computeOutputShapeFromInboundLayers(): TensorShape

Computes output shape, based on input shapes of inbound layers.

forward
Link copied to clipboard
open override fun forward(tf: Ops, input: Operand<Float>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

open fun forward(tf: Ops, input: List<Operand<Float>>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

invoke
Link copied to clipboard
operator fun invoke(vararg layers: Layer): Layer

Important part of functional API. It takes layers as input and saves them to the inboundLayers of the given layer.

toString
Link copied to clipboard
open override fun toString(): String

Properties

activation
Link copied to clipboard
open override val activation: Activations
activityRegularizer
Link copied to clipboard
open override val activityRegularizer: Regularizer? = null
biasInitializer
Link copied to clipboard
open override val biasInitializer: Initializer
biasRegularizer
Link copied to clipboard
open override val biasRegularizer: Regularizer? = null
dilations
Link copied to clipboard
open override val dilations: IntArray

dilations of the convolution for each dimension of the input tensor (five numbers). Currently, dilation values greater than 1 are not supported on cpu.

dimensions
Link copied to clipboard
val dimensions: Int

dimensionality of this convolution operation

filters
Link copied to clipboard
open override val filters: Int = 3
hasActivation
Link copied to clipboard
open override val hasActivation: Boolean

Returns True, if layer has internal activation function.

inboundLayers
Link copied to clipboard
var inboundLayers: MutableList<Layer>

Returns inbound layers.

kernelInitializer
Link copied to clipboard
open override val kernelInitializer: Initializer
kernelRegularizer
Link copied to clipboard
open override val kernelRegularizer: Regularizer? = null
kernelSize
Link copied to clipboard
open override val kernelSize: IntArray

size of the convolutional kernel (three numbers)

name
Link copied to clipboard
var name: String

Layer name. A new name is generated during model compilation when provided name is empty.

outboundLayers
Link copied to clipboard
var outboundLayers: MutableList<Layer>

Returns outbound layers.

outputShape
Link copied to clipboard
lateinit var outputShape: TensorShape

Output data tensor shape.

padding
Link copied to clipboard
open override val padding: ConvPadding
paramCount
Link copied to clipboard
open val paramCount: Int

Number of parameters in this layer.

parentModel
Link copied to clipboard
var parentModel: GraphTrainableModel? = null

Model where this layer is used.

strides
Link copied to clipboard
open override val strides: IntArray

strides of the convolution for each dimension of the input tensor (five numbers)

useBias
Link copied to clipboard
open override val useBias: Boolean = true
variables
Link copied to clipboard
open override val variables: List<KVariable>

Variables used in this layer.