PReLU
class PReLU(alphaInitializer: Initializer, alphaRegularizer: Regularizer?, sharedAxes: IntArray?, name: String) : AbstractActivationLayer, TrainableLayer
Content copied to clipboard
Parametric Rectified Linear Unit.
It follows:
f(x) = alpha * x if x < 0
f(x) = x if x >= 0
where alpha
is a learnable weight and has the same shape as x
(i.e. input).
Since
0.3
Constructors
PReLU
Link copied to clipboard
fun PReLU(alphaInitializer: Initializer = Zeros(), alphaRegularizer: Regularizer? = null, sharedAxes: IntArray? = null, name: String = "")
Content copied to clipboard
Functions
buildFromInboundLayers
Link copied to clipboard
Extend this function to define variables in layer.
computeOutputShape
Link copied to clipboard
Computes output shape, based on inputShape and Layer type.
computeOutputShapeFromInboundLayers
Link copied to clipboard
Computes output shape, based on input shapes of inbound layers.
Properties
alphaInitializer
Link copied to clipboard
alphaRegularizer
Link copied to clipboard
hasActivation
Link copied to clipboard
inboundLayers
Link copied to clipboard
isTrainable
Link copied to clipboard
outboundLayers
Link copied to clipboard
outputShape
Link copied to clipboard
paramCount
Link copied to clipboard
parentModel
Link copied to clipboard
sharedAxes
Link copied to clipboard