Dense
class Dense(outputSize: Int, activation: Activations, kernelInitializer: Initializer, biasInitializer: Initializer, kernelRegularizer: Regularizer?, biasRegularizer: Regularizer?, activityRegularizer: Regularizer?, useBias: Boolean, name: String) : Layer, TrainableLayer
Content copied to clipboard
Densely-connected (fully-connected) layer class.
This layer implements the operation: outputs = activation(inputs * kernel + bias)
where activation
is the element-wise activation function passed as the activation
argument, kernel
is a weights' matrix created by the layer, and bias
is a bias vector created by the layer (only applicable if use_bias
is True
).
Constructors
Dense
Link copied to clipboard
fun Dense(outputSize: Int = 128, activation: Activations = Activations.Relu, kernelInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), kernelRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, useBias: Boolean = true, name: String = "")
Content copied to clipboard
Creates Dense object.
Functions
buildFromInboundLayers
Link copied to clipboard
Extend this function to define variables in layer.
computeOutputShape
Link copied to clipboard
Computes output shape, based on inputShape and Layer type.
computeOutputShapeFromInboundLayers
Link copied to clipboard
Computes output shape, based on input shapes of inbound layers.
forward
Link copied to clipboard
Properties
activation
Link copied to clipboard
activityRegularizer
Link copied to clipboard
biasInitializer
Link copied to clipboard
biasRegularizer
Link copied to clipboard
hasActivation
Link copied to clipboard
inboundLayers
Link copied to clipboard
isTrainable
Link copied to clipboard
kernelInitializer
Link copied to clipboard
kernelRegularizer
Link copied to clipboard
outboundLayers
Link copied to clipboard
outputShape
Link copied to clipboard
outputSize
Link copied to clipboard
paramCount
Link copied to clipboard
parentModel
Link copied to clipboard