Dataframe 0.13 Help

groupBy

Splits the rows of DataFrame into groups using one or several columns as grouping keys.

groupBy(moveToTop = true) { columns } [ transformations ] reducer | aggregator | pivot transformations = [ .sortByCount() | .sortByCountAsc() | .sortBy { columns } | .sortByDesc { columns } ] [ .updateGroups { frameExpression } ] [ .add(column) { rowExpression } ] reducer = .minBy { column } | .maxBy { column } | .first [ { rowCondition } ] | .last [ { rowCondition } ] .concat() | .into([column]) [{ rowExpression }] | .values { valueColumns } aggregator = .count() | .concat() | .into([column]) [{ rowExpression }] | .values { valueColumns } | .aggregate { aggregations } | .<stat> [ { columns } ] pivot = .pivot { columns } [ .default(defaultValue) ] pivotReducer | pivotAggregator

See column selectors, groupBy transformations, groupBy aggregations, pivot+groupBy

df.groupBy { name } df.groupBy { city and name.lastName } df.groupBy { age / 10 named "ageDecade" }
val name by columnGroup() val lastName by name.column<String>() val firstName by name.column<String>() val age by column<Int>() val city by column<String?>() df.groupBy { name } // or df.groupBy(name) df.groupBy { city and lastName } // or df.groupBy(city, lastName) df.groupBy { age / 10 named "ageDecade" }
df.groupBy("name") df.groupBy { "city" and "name"["lastName"] } df.groupBy { "age"<Int>() / 10 named "ageDecade" }

Grouping columns can be created inplace:

df.groupBy { expr { name.firstName.length + name.lastName.length } named "nameLength" }
val name by columnGroup() val lastName by name.column<String>() val firstName by name.column<String>() df.groupBy { expr { firstName().length + lastName().length } named "nameLength" }
df.groupBy { expr { "name"["firstName"]<String>().length + "name"["lastName"]<String>().length } named "nameLength" }

With optional moveToTop parameter you can choose whether to make a selected nested column a top-level column:

df.groupBy(moveToTop = true) { name.lastName }

or to keep it inside a ColumnGroup:

df.groupBy(moveToTop = false) { name.lastName }

Returns GroupBy object.

Transformation

GroupBy DataFrame is a DataFrame with one chosen FrameColumn containing data groups.

It supports the following operations:

Any DataFrame with FrameColumn can be reinterpreted as GroupBy DataFrame:

val key by columnOf(1, 2) // create int column with name "key" val data by columnOf(df[0..3], df[4..6]) // create frame column with name "data" val df = dataFrameOf(key, data) // create dataframe with two columns df.asGroupBy { data } // convert dataframe to GroupBy by interpreting 'data' column as groups

And any GroupBy DataFrame can be reinterpreted as DataFrame with FrameColumn:

df.groupBy { city }.toDataFrame()

Use concat to union all data groups of GroupBy into original DataFrame preserving new order of rows produced by grouping:

df.groupBy { name }.concat()

Aggregation

To compute one or several statistics per every group of GroupBy use aggregate function. Its body will be executed for every data group and has a receiver of type DataFrame that represents current data group being aggregated. To add a new column to the resulting DataFrame, pass the name of new column to infix function into:

df.groupBy { city }.aggregate { count() into "total" count { age > 18 } into "adults" median { age } into "median age" min { age } into "min age" maxBy { age }.name into "oldest" }
val city by column<String?>() val age by column<Int>() val name by columnGroup() df.groupBy { city }.aggregate { count() into "total" count { age() > 18 } into "adults" median { age } into "median age" min { age } into "min age" maxBy { age() }[name] into "name of oldest" } // or df.groupBy(city).aggregate { count() into "total" count { age > 18 } into "adults" median(age) into "median age" min(age) into "min age" maxBy(age)[name] into "name of oldest" } // or df.groupBy(city).aggregate { count() into "total" age().count { it > 18 } into "adults" age().median() into "median age" age().min() into "min age" maxBy(age)[name] into "name of oldest" }
df.groupBy("city").aggregate { count() into "total" count { "age"<Int>() > 18 } into "adults" median("age") into "median age" min("age") into "min age" maxBy("age")["name"] into "oldest" } // or df.groupBy("city").aggregate { count() into "total" count { "age"<Int>() > 18 } into "adults" "age"<Int>().median() into "median age" "age"<Int>().min() into "min age" maxBy("age")["name"] into "oldest" }

If only one aggregation function is used, column name can be omitted:

df.groupBy { city }.aggregate { maxBy { age }.name }
val city by column<String?>() val age by column<Int>() val name by columnGroup() df.groupBy { city }.aggregate { maxBy { age() }[name] } // or df.groupBy(city).aggregate { maxBy(age)[name] }
df.groupBy("city").aggregate { maxBy("age")["name"] }

Most common aggregation functions can be computed directly at GroupBy DataFrame:

df.groupBy { city }.max() // max for every comparable column df.groupBy { city }.mean() // mean for every numeric column df.groupBy { city }.max { age } // max age into column "age" df.groupBy { city }.sum("total weight") { weight } // sum of weights into column "total weight" df.groupBy { city }.count() // number of rows into column "count" df.groupBy { city } .max { name.firstName.length() and name.lastName.length() } // maximum length of firstName or lastName into column "max" df.groupBy { city } .medianFor { age and weight } // median age into column "age", median weight into column "weight" df.groupBy { city } .minFor { (age into "min age") and (weight into "min weight") } // min age into column "min age", min weight into column "min weight" df.groupBy { city }.meanOf("mean ratio") { weight?.div(age) } // mean of weight/age into column "mean ratio"
val city by column<String?>() val age by column<Int>() val weight by column<Int?>() val name by columnGroup() val firstName by name.column<String>() val lastName by name.column<String>() df.groupBy { city }.max() // max for every comparable column df.groupBy { city }.mean() // mean for every numeric column df.groupBy { city }.max { age } // max age into column "age" df.groupBy { city }.sum("total weight") { weight } // sum of weights into column "total weight" df.groupBy { city }.count() // number of rows into column "count" df.groupBy { city } .max { firstName.length() and lastName.length() } // maximum length of firstName or lastName into column "max" df.groupBy { city } .medianFor { age and weight } // median age into column "age", median weight into column "weight" df.groupBy { city } .minFor { (age into "min age") and (weight into "min weight") } // min age into column "min age", min weight into column "min weight" df.groupBy { city }.meanOf("mean ratio") { weight()?.div(age()) } // mean of weight/age into column "mean ratio"
df.groupBy("city").max() // max for every comparable column df.groupBy("city").mean() // mean for every numeric column df.groupBy("city").max("age") // max age into column "age" df.groupBy("city").sum("weight", name = "total weight") // sum of weights into column "total weight" df.groupBy("city").count() // number of rows into column "count" df.groupBy("city").max { "name"["firstName"]<String>().length() and "name"["lastName"]<String>().length() } // maximum length of firstName or lastName into column "max" df.groupBy("city") .medianFor("age", "weight") // median age into column "age", median weight into column "weight" df.groupBy("city") .minFor { ("age"<Int>() into "min age") and ("weight"<Int?>() into "min weight") } // min age into column "min age", min weight into column "min weight" df.groupBy("city").meanOf("mean ratio") { "weight"<Int?>()?.div("age"<Int>()) } // mean of weight/age into column "mean ratio"

To get all column values for every group without aggregation use values function:

df.groupBy { city }.values() df.groupBy { city }.values { name and age } df.groupBy { city }.values { weight into "weights" }
val city by column<String?>() val age by column<Int>() val weight by column<Int?>() val name by columnGroup() df.groupBy(city).values() df.groupBy(city).values(name, age) df.groupBy(city).values { weight into "weights" }
df.groupBy("city").values() df.groupBy("city").values("name", "age") df.groupBy("city").values { "weight" into "weights" }
Last modified: 18 July 2024