DataFrame 1.0 Help

drop / dropNulls / dropNaNs / dropNA

Removes all rows that satisfy row condition

Related operations: Filter rows

df.drop { weight == null || city == null }
df.drop { it["weight"] == null || it["city"] == null }

dropNulls

Remove rows with null values. This is a DataFrame equivalent of filterNotNull.

See column selectors for how to select the columns for this operation.

df.dropNulls() // remove rows with null value in any column df.dropNulls(whereAllNull = true) // remove rows with null values in all columns df.dropNulls { city } // remove rows with null value in 'city' column df.dropNulls { city and weight } // remove rows with null value in 'city' OR 'weight' columns df.dropNulls(whereAllNull = true) { city and weight } // remove rows with null value in 'city' AND 'weight' columns

dropNaNs

Remove rows with NaN values (Double.NaN or Float.NaN).

See column selectors for how to select the columns for this operation.

df.dropNaNs() // remove rows containing NaN in any column df.dropNaNs(whereAllNaN = true) // remove rows with NaN in all columns df.dropNaNs { weight } // remove rows where 'weight' is NaN df.dropNaNs { age and weight } // remove rows where either 'age' or 'weight' is NaN df.dropNaNs(whereAllNaN = true) { age and weight } // remove rows where both 'age' and 'weight' are NaN

dropNA

Remove rows with NA values (null, Double.NaN, or Float.NaN).

See column selectors for how to select the columns for this operation.

df.dropNA() // remove rows containing null or NaN in any column df.dropNA(whereAllNA = true) // remove rows with null or NaN in all columns df.dropNA { weight } // remove rows where 'weight' is null or NaN df.dropNA { age and weight } // remove rows where either 'age' or 'weight' is null or NaN df.dropNA(whereAllNA = true) { age and weight } // remove rows where both 'age' and 'weight' are null or NaN
18 September 2025