drop / dropNulls / dropNaNs / dropNA
Removes all rows that satisfy row condition
Related operations: Filter rows
Properties
Strings
df.drop { weight == null || city == null }df.drop { it["weight"] == null || it["city"] == null }Remove rows with null values. This is a DataFrame equivalent of filterNotNull.
See column selectors for how to select the columns for this operation.
df.dropNulls() // remove rows with null value in any column
df.dropNulls(whereAllNull = true) // remove rows with null values in all columns
df.dropNulls { city } // remove rows with null value in 'city' column
df.dropNulls { city and weight } // remove rows with null value in 'city' OR 'weight' columns
df.dropNulls(whereAllNull = true) { city and weight } // remove rows with null value in 'city' AND 'weight' columnsRemove rows with NaN values (Double.NaN or Float.NaN).
See column selectors for how to select the columns for this operation.
df.dropNaNs() // remove rows containing NaN in any column
df.dropNaNs(whereAllNaN = true) // remove rows with NaN in all columns
df.dropNaNs { weight } // remove rows where 'weight' is NaN
df.dropNaNs { age and weight } // remove rows where either 'age' or 'weight' is NaN
df.dropNaNs(whereAllNaN = true) { age and weight } // remove rows where both 'age' and 'weight' are NaNRemove rows with NA values (null, Double.NaN, or Float.NaN).
See column selectors for how to select the columns for this operation.
df.dropNA() // remove rows containing null or NaN in any column
df.dropNA(whereAllNA = true) // remove rows with null or NaN in all columns
df.dropNA { weight } // remove rows where 'weight' is null or NaN
df.dropNA { age and weight } // remove rows where either 'age' or 'weight' is null or NaN
df.dropNA(whereAllNA = true) { age and weight } // remove rows where both 'age' and 'weight' are null or NaN