rightOuterJoin

fun <K, V, W> JavaRDD<Tuple2<K, V>>.rightOuterJoin(    other: JavaRDD<Tuple2<K, W>>,     partitioner: Partitioner): JavaRDD<Tuple2<K, Tuple2<Optional<V>, W>>>

Perform a right outer join of this and other. For each element (k, w) in other, the resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the pair (k, (None, w)) if no elements in this have key k. Uses the given Partitioner to partition the output RDD.


fun <K, V, W> JavaRDD<Tuple2<K, V>>.rightOuterJoin(other: JavaRDD<Tuple2<K, W>>): JavaRDD<Tuple2<K, Tuple2<Optional<V>, W>>>

Perform a right outer join of this and other. For each element (k, w) in other, the resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the pair (k, (None, w)) if no elements in this have key k. Hash-partitions the resulting RDD using the existing partitioner/parallelism level.


fun <K, V, W> JavaRDD<Tuple2<K, V>>.rightOuterJoin(    other: JavaRDD<Tuple2<K, W>>,     numPartitions: Int): JavaRDD<Tuple2<K, Tuple2<Optional<V>, W>>>

Perform a right outer join of this and other. For each element (k, w) in other, the resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the pair (k, (None, w)) if no elements in this have key k. Hash-partitions the resulting RDD into the given number of partitions.


fun <K, V, W> JavaDStream<Tuple2<K, V>>.rightOuterJoin(    other: JavaDStream<Tuple2<K, W>>,     numPartitions: Int = dstream().ssc().sc().defaultParallelism()): JavaDStream<Tuple2<K, Tuple2<Optional<V>, W>>>

Return a new DStream by applying 'right outer join' between RDDs of this DStream and other DStream. Hash partitioning is used to generate the RDDs with numPartitions partitions.


fun <K, V, W> JavaDStream<Tuple2<K, V>>.rightOuterJoin(    other: JavaDStream<Tuple2<K, W>>,     partitioner: Partitioner): JavaDStream<Tuple2<K, Tuple2<Optional<V>, W>>>

Return a new DStream by applying 'right outer join' between RDDs of this DStream and other DStream. The supplied org.apache.spark.Partitioner is used to control the partitioning of each RDD.