(Kotlin-specific) Applies the given function to each cogrouped data. For each unique group, the function will be passed the grouping key and 2 iterators containing all elements in the group from Dataset and other. The function can return an iterator containing elements of an arbitrary type which will be returned as a new Dataset.
fun <K, V, W1, W2, W3> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>, other3: JavaRDD<Tuple2<K, W3>>, partitioner: Partitioner): JavaRDD<Tuple2<K, Tuple4<Iterable<V>, Iterable<W1>, Iterable<W2>, Iterable<W3>>>> fun <K, V, W1, W2, W3> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>, other3: JavaRDD<Tuple2<K, W3>>): JavaRDD<Tuple2<K, Tuple4<Iterable<V>, Iterable<W1>, Iterable<W2>, Iterable<W3>>>> fun <K, V, W1, W2, W3> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>, other3: JavaRDD<Tuple2<K, W3>>, numPartitions: Int): JavaRDD<Tuple2<K, Tuple4<Iterable<V>, Iterable<W1>, Iterable<W2>, Iterable<W3>>>> For each key k in this or other1 or other2 or other3, return a resulting RDD that contains a tuple with the list of values for that key in this, other1, other2 and other3.
For each key k in this or other, return a resulting RDD that contains a tuple with the list of values for that key in this as well as other.
fun <K, V, W1, W2> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>, partitioner: Partitioner): JavaRDD<Tuple2<K, Tuple3<Iterable<V>, Iterable<W1>, Iterable<W2>>>> fun <K, V, W1, W2> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>): JavaRDD<Tuple2<K, Tuple3<Iterable<V>, Iterable<W1>, Iterable<W2>>>> fun <K, V, W1, W2> JavaRDD<Tuple2<K, V>>.cogroup( other1: JavaRDD<Tuple2<K, W1>>, other2: JavaRDD<Tuple2<K, W2>>, numPartitions: Int): JavaRDD<Tuple2<K, Tuple3<Iterable<V>, Iterable<W1>, Iterable<W2>>>> For each key k in this or other1 or other2, return a resulting RDD that contains a tuple with the list of values for that key in this, other1 and other2.
fun <K, V, W> JavaDStream<Tuple2<K, V>>.cogroup( other: JavaDStream<Tuple2<K, W>>, numPartitions: Int = dstream().ssc().sc().defaultParallelism()): JavaDStream<Tuple2<K, Tuple2<Iterable<V>, Iterable<W>>>> Return a new DStream by applying 'cogroup' between RDDs of this
DStream and other
DStream. Hash partitioning is used to generate the RDDs with numPartitions
partitions.
fun <K, V, W> JavaDStream<Tuple2<K, V>>.cogroup( other: JavaDStream<Tuple2<K, W>>, partitioner: Partitioner): JavaDStream<Tuple2<K, Tuple2<Iterable<V>, Iterable<W>>>> Return a new DStream by applying 'cogroup' between RDDs of this
DStream and other
DStream. The supplied org.apache.spark.Partitioner is used to partition the generated RDDs.