AvgPool2D

class AvgPool2D(poolSize: IntArray, strides: IntArray, padding: ConvPadding, name: String) : Layer

Average pooling layer for 2D inputs (e.g. images).

NOTE: Works with tensors which must have rank 4 (batch, height, width, channels).

Constructors

AvgPool2D
Link copied to clipboard
fun AvgPool2D(poolSize: IntArray = intArrayOf(1, 2, 2, 1), strides: IntArray = intArrayOf(1, 2, 2, 1), padding: ConvPadding = ConvPadding.VALID, name: String = "")

Creates AvgPool2D object.

Functions

build
Link copied to clipboard
open override fun build(tf: Ops, kGraph: KGraph, inputShape: Shape)

Extend this function to define variables in layer.

buildFromInboundLayers
Link copied to clipboard
fun buildFromInboundLayers(tf: Ops, kGraph: KGraph)

Extend this function to define variables in layer.

computeOutputShape
Link copied to clipboard
open override fun computeOutputShape(inputShape: Shape): Shape

Computes output shape, based on inputShape and Layer type.

computeOutputShapeFromInboundLayers
Link copied to clipboard
open fun computeOutputShapeFromInboundLayers(): TensorShape

Computes output shape, based on input shapes of inbound layers.

forward
Link copied to clipboard
open override fun forward(tf: Ops, input: Operand<Float>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

open fun forward(tf: Ops, input: List<Operand<Float>>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

invoke
Link copied to clipboard
operator fun invoke(vararg layers: Layer): Layer

Important part of functional API. It takes layers as input and saves them to the inboundLayers of the given layer.

Properties

hasActivation
Link copied to clipboard
open override val hasActivation: Boolean

Returns True, if layer has internal activation function.

inboundLayers
Link copied to clipboard
var inboundLayers: MutableList<Layer>

Returns inbound layers.

isTrainable
Link copied to clipboard
var isTrainable: Boolean = true

True, if layer's weights could be changed during training. If false, layer's weights are frozen and could be changed during the training.

name
Link copied to clipboard
var name: String
outboundLayers
Link copied to clipboard
var outboundLayers: MutableList<Layer>

Returns outbound layers.

outputShape
Link copied to clipboard
lateinit var outputShape: TensorShape

Output data tensor shape.

padding
Link copied to clipboard
val padding: ConvPadding

The padding method, either 'valid' or 'same' or 'full'.

paramCount
Link copied to clipboard
open override val paramCount: Int

Returns amount of neurons.

parentModel
Link copied to clipboard
var parentModel: TrainableModel? = null

Model where this layer is used.

poolSize
Link copied to clipboard
val poolSize: IntArray

The size of the sliding window for each dimension of input tensor (pool batch, pool height, pool width, pool channels). Usually, pool batch and pool channels are equal to 1.

strides
Link copied to clipboard
val strides: IntArray

Strides of the pooling operation for each dimension of input tensor.

weights
Link copied to clipboard
open override var weights: Map<String, Array<*>>

Layer's weights.