Conv1D

class Conv1D(filters: Long, kernelSize: Long, strides: LongArray, dilations: LongArray, activation: Activations, kernelInitializer: Initializer, biasInitializer: Initializer, kernelRegularizer: Regularizer?, biasRegularizer: Regularizer?, activityRegularizer: Regularizer?, padding: ConvPadding, useBias: Boolean, name: String) : AbstractConv

1D convolution layer (e.g. convolution over audio data).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. Finally, the activation is applied to the outputs as well.

It expects input data of size (N, L, C) where

N - batch size
L - length of signal sequence
C - number of channels

Since

0.3

Constructors

Conv1D
Link copied to clipboard
fun Conv1D(filters: Long = 32, kernelSize: Long = 3, strides: LongArray = longArrayOf(1, 1, 1), dilations: LongArray = longArrayOf(1, 1, 1), activation: Activations = Activations.Relu, kernelInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), kernelRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, padding: ConvPadding = ConvPadding.SAME, useBias: Boolean = true, name: String = "")

Creates Conv1D object.

Functions

build
Link copied to clipboard
open override fun build(tf: Ops, kGraph: KGraph, inputShape: Shape)

Extend this function to define variables in layer.

buildFromInboundLayers
Link copied to clipboard
fun buildFromInboundLayers(tf: Ops, kGraph: KGraph)

Extend this function to define variables in layer.

computeOutputShape
Link copied to clipboard
open override fun computeOutputShape(inputShape: Shape): Shape

Computes output shape, based on inputShape and Layer type.

computeOutputShapeFromInboundLayers
Link copied to clipboard
open fun computeOutputShapeFromInboundLayers(): TensorShape

Computes output shape, based on input shapes of inbound layers.

forward
Link copied to clipboard
open override fun forward(tf: Ops, input: Operand<Float>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

open fun forward(tf: Ops, input: List<Operand<Float>>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Builds main layer input transformation with tf. Depends on Layer type.

invoke
Link copied to clipboard
operator fun invoke(vararg layers: Layer): Layer

Important part of functional API. It takes layers as input and saves them to the inboundLayers of the given layer.

toString
Link copied to clipboard
open override fun toString(): String

Properties

activation
Link copied to clipboard
val activation: Activations

Activation function.

activityRegularizer
Link copied to clipboard
val activityRegularizer: Regularizer? = null

Regularizer function applied to the output of the layer (its "activation").

biasInitializer
Link copied to clipboard
val biasInitializer: Initializer

An initializer for the bias vector.

biasRegularizer
Link copied to clipboard
val biasRegularizer: Regularizer? = null

Regularizer function applied to the bias vector.

biasShapeArray
Link copied to clipboard
val biasShapeArray: LongArray

Returns the shape of bias weights.

dilations
Link copied to clipboard
val dilations: LongArray

Three numbers specifying the dilation rate to use for dilated convolution sequence dimensions of input tensor.

filters
Link copied to clipboard
val filters: Long = 32

The dimensionality of the output space (i.e. the number of filters in the convolution).

hasActivation
Link copied to clipboard
open override val hasActivation: Boolean

Returns True, if layer has internal activation function.

inboundLayers
Link copied to clipboard
var inboundLayers: MutableList<Layer>

Returns inbound layers.

isTrainable
Link copied to clipboard
var isTrainable: Boolean = true

True, if layer's weights could be changed during training. If false, layer's weights are frozen and could be changed during the training.

kernelInitializer
Link copied to clipboard
val kernelInitializer: Initializer

An initializer for the convolution kernel

kernelRegularizer
Link copied to clipboard
val kernelRegularizer: Regularizer? = null

Regularizer function applied to the kernel weights matrix.

kernelShapeArray
Link copied to clipboard
val kernelShapeArray: LongArray

Returns the shape of kernel weights.

kernelSize
Link copied to clipboard
val kernelSize: Long = 3

Long number, specifying the width of the 1D convolution window.

name
Link copied to clipboard
var name: String
outboundLayers
Link copied to clipboard
var outboundLayers: MutableList<Layer>

Returns outbound layers.

outputShape
Link copied to clipboard
lateinit var outputShape: TensorShape

Output data tensor shape.

padding
Link copied to clipboard
val padding: ConvPadding

The padding method, either 'valid' or 'same' or 'full'.

paramCount
Link copied to clipboard
open override val paramCount: Int

Returns amount of neurons.

parentModel
Link copied to clipboard
var parentModel: TrainableModel? = null

Model where this layer is used.

strides
Link copied to clipboard
val strides: LongArray

Three numbers specifying the strides of the pooling operation for each dimension of input tensor. NOTE: Specifying stride value != 1 is incompatible with specifying dilation value != 1.

useBias
Link copied to clipboard
val useBias: Boolean = true

If true the layer uses a bias vector.

weights
Link copied to clipboard
open override var weights: Map<String, Array<*>>

Layer's weights.