Data Schemas Generation From Existing DataFrame
Special utility functions that generate code of useful Kotlin definitions (returned as a String
) based on the current DataFrame
schema.
inline fun <reified T> DataFrame<T>.generateDataClasses(
markerName: String? = null,
extensionProperties: Boolean = false,
visibility: MarkerVisibility = MarkerVisibility.IMPLICIT_PUBLIC,
useFqNames: Boolean = false,
nameNormalizer: NameNormalizer = NameNormalizer.default,
): CodeString
Generates Kotlin data classes corresponding to the DataFrame
schema (including all nested DataFrame
columns and column groups).
Useful when you want to:
Work with the data as regular Kotlin data classes.
Convert a dataframe to instantiated data classes with
df.toListOf<DataClassType>()
.Work with data classes serialization.
Extract structured types for further use in your application.
markerName
:String?
— The base name to use for generated data classes.
Ifnull
, uses theT
type argument ofDataFrame
simple name.
Default:null
.extensionProperties
:Boolean
– Whether to generate extension properties in addition tointerface
declarations.
Useful if you don't use the compiler plugin, otherwise they are not needed; the compiler plugin, notebooks, and older Gradle/KSP plugin generate them automatically. Default:false
.visibility
:MarkerVisibility
– Visibility modifier for the generated declarations.
Default:MarkerVisibility.IMPLICIT_PUBLIC
.useFqNames
:Boolean
– Iftrue
, fully qualified type names will be used in generated code.
Default:false
.nameNormalizer
:NameNormalizer
– Strategy for converting column names (with spaces, underscores, etc.) to Kotlin-style identifiers. Generated properties will still refer to columns by their actual name using the@ColumnName
annotation. Default:NameNormalizer.default
.
CodeString
– A value class wrapper forString
, containing
the generated Kotlin code ofdata class
declarations and optionally extension properties.
df.generateDataClasses("Customer")
Output:
@DataSchema
data class Customer1(
val amount: Double,
val orderId: Int
)
@DataSchema
data class Customer(
val orders: List<Customer1>,
val user: String
)
Add these classes to your project and convert the DataFrame to a list of typed objects:
val customers: List<Customer> = df.cast<Customer>().toList()
inline fun <reified T> DataFrame<T>.generateInterfaces(): CodeString
fun <T> DataFrame<T>.generateInterfaces(markerName: String): CodeString
Generates @DataSchema
interfaces for this DataFrame
(including all nested DataFrame
columns and column groups) as Kotlin interfaces.
This is useful when working with the compiler plugin in cases where the schema cannot be inferred automatically from the source.
markerName
:String?
— The base name to use for generated interfaces.
Ifnull
, uses theT
type argument ofDataFrame
simple name.
Default:null
.extensionProperties
:Boolean
– Whether to generate extension properties in addition tointerface
declarations.
Useful if you don't use the compiler plugin, otherwise they are not needed; the compiler plugin, notebooks, and older Gradle/KSP plugin generate them automatically. Default:false
.visibility
:MarkerVisibility
– Visibility modifier for the generated declarations.
Default:MarkerVisibility.IMPLICIT_PUBLIC
.useFqNames
:Boolean
– Iftrue
, fully qualified type names will be used in generated code.
Default:false
.nameNormalizer
:NameNormalizer
– Strategy for converting column names (with spaces, underscores, etc.) to Kotlin-style identifiers. Generated properties will still refer to columns by their actual name using the@ColumnName
annotation. Default:NameNormalizer.default
.
CodeString
– A value class wrapper forString
, containing
the generated Kotlin code of@DataSchema
interfaces without extension properties.
df
df.generateInterfaces()
Output:
@DataSchema(isOpen = false)
interface _DataFrameType11 {
val amount: kotlin.Double
val orderId: kotlin.Int
}
@DataSchema
interface _DataFrameType1 {
val orders: List<_DataFrameType11>
val user: kotlin.String
}
By adding these interfaces to your project with the compiler plugin enabled,
you'll gain full support for the extension properties API and type-safe operations.
Use cast
to apply the generated schema to a DataFrame
:
df.cast<_DataFrameType1>().filter { orders.all { orderId >= 102 } }