ResNet34

class ResNet34(inputShape: IntArray?) : TFModels.CV<Functional>

This model is a neural network for image classification that take images as input and classify the major object in the image into a set of 1000 different classes (labels are available via org.jetbrains.kotlinx.dl.impl.dataset.Imagenet.V1k.labels method).

This model has 34 layers with ResNetv1 architecture.

The model have

  • an input with the shape (1x224x224x3)

  • an output with the shape (1x1000)

NOTE: ResNet v2 uses pre-activation function whereas ResNet v1 uses post-activation for the residual blocks.

See also

Constructors

ResNet34
Link copied to clipboard
fun ResNet34(inputShape: IntArray? = null)

Functions

loadModelConfiguration
Link copied to clipboard
open override fun loadModelConfiguration(jsonFile: File): Functional

Loads model configuration from the provided jsonFile.

model
Link copied to clipboard
open fun model(modelHub: ModelHub): Functional
pretrainedModel
Link copied to clipboard
open override fun pretrainedModel(modelHub: ModelHub): ImageRecognitionModel

Properties

inputShape
Link copied to clipboard
var inputShape: IntArray?
modelRelativePath
Link copied to clipboard
open override val modelRelativePath: String
preprocessor
Link copied to clipboard
open override val preprocessor: Operation<Pair<FloatArray, TensorShape>, Pair<FloatArray, TensorShape>>