MaxPool2D

class MaxPool2D(poolSize: IntArray, strides: IntArray, padding: ConvPadding, name: String) : Layer

Max pooling layer for 2D inputs (e.g. images).

NOTE: Works with tensors which must have rank 4 (batch, height, width, channels).

Constructors

MaxPool2D
Link copied to clipboard
fun MaxPool2D(poolSize: Int = 2, strides: Int = 2, padding: ConvPadding = ConvPadding.VALID, name: String = "")
MaxPool2D
Link copied to clipboard
fun MaxPool2D(poolSize: IntArray = intArrayOf(1, 2, 2, 1), strides: IntArray = intArrayOf(1, 2, 2, 1), padding: ConvPadding = ConvPadding.VALID, name: String = "")

Creates MaxPool2D object.

Functions

build
Link copied to clipboard
open override fun build(tf: Ops, input: Operand<Float>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>
open fun build(tf: Ops, input: List<Operand<Float>>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Extend this function to define variables in the layer and compute layer output.

invoke
Link copied to clipboard
operator fun invoke(vararg layers: Layer): Layer

Important part of functional API. It takes layers as input and saves them to the inboundLayers of the given layer.

toString
Link copied to clipboard
open override fun toString(): String

Properties

hasActivation
Link copied to clipboard
open override val hasActivation: Boolean

Returns True, if layer has internal activation function.

inboundLayers
Link copied to clipboard
var inboundLayers: MutableList<Layer>

Returns inbound layers.

name
Link copied to clipboard
var name: String

Layer name. A new name is generated during model compilation when provided name is empty.

outboundLayers
Link copied to clipboard
var outboundLayers: MutableList<Layer>

Returns outbound layers.

outputShape
Link copied to clipboard
lateinit var outputShape: TensorShape

Output data tensor shape.

padding
Link copied to clipboard
val padding: ConvPadding

The padding method, either 'valid' or 'same' or 'full'.

parentModel
Link copied to clipboard
var parentModel: GraphTrainableModel? = null

Model where this layer is used.

poolSize
Link copied to clipboard
val poolSize: IntArray

The size of the sliding window for each dimension of input tensor (pool batch, pool height, pool width, pool channels). Usually, pool batch and pool channels are equal to 1.

strides
Link copied to clipboard
val strides: IntArray

Strides of the pooling operation for each dimension of input tensor.