DepthwiseConv2D

class DepthwiseConv2D(kernelSize: IntArray, strides: IntArray, dilations: IntArray, activation: Activations, depthMultiplier: Int, depthwiseInitializer: Initializer, biasInitializer: Initializer, depthwiseRegularizer: Regularizer?, biasRegularizer: Regularizer?, activityRegularizer: Regularizer?, padding: ConvPadding, useBias: Boolean, name: String) : AbstractConv, NoGradients

Depthwise separable 2D convolution. (e.g. spatial convolution over images).

Depthwise Separable convolutions consist of performing just the first step in a depthwise spatial convolution (which acts on each input channel separately). The depthMultiplier argument controls how many output channels are generated per input channel in the depthwise step.

Since

0.2

Constructors

DepthwiseConv2D
Link copied to clipboard
fun DepthwiseConv2D(kernelSize: Int = 3, strides: Int = 1, dilations: Int = 1, activation: Activations = Activations.Relu, depthMultiplier: Int = 1, depthwiseInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), depthwiseRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, padding: ConvPadding = ConvPadding.SAME, useBias: Boolean = true, name: String = "")
DepthwiseConv2D
Link copied to clipboard
fun DepthwiseConv2D(kernelSize: IntArray = intArrayOf(3, 3), strides: IntArray = intArrayOf(1, 1, 1, 1), dilations: IntArray = intArrayOf(1, 1, 1, 1), activation: Activations = Activations.Relu, depthMultiplier: Int = 1, depthwiseInitializer: Initializer = HeNormal(), biasInitializer: Initializer = HeUniform(), depthwiseRegularizer: Regularizer? = null, biasRegularizer: Regularizer? = null, activityRegularizer: Regularizer? = null, padding: ConvPadding = ConvPadding.SAME, useBias: Boolean = true, name: String = "")

Creates DepthwiseConv2D object.

Functions

build
Link copied to clipboard
open override fun build(tf: Ops, input: Operand<Float>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>
open fun build(tf: Ops, input: List<Operand<Float>>, isTraining: Operand<Boolean>, numberOfLosses: Operand<Float>?): Operand<Float>

Extend this function to define variables in the layer and compute layer output.

invoke
Link copied to clipboard
operator fun invoke(vararg layers: Layer): Layer

Important part of functional API. It takes layers as input and saves them to the inboundLayers of the given layer.

toString
Link copied to clipboard
open override fun toString(): String

Properties

activation
Link copied to clipboard
open override val activation: Activations

Activation function.

activityRegularizer
Link copied to clipboard
open override val activityRegularizer: Regularizer? = null

Regularizer function applied to the output of the layer (its "activation").

biasInitializer
Link copied to clipboard
open override val biasInitializer: Initializer

An initializer for the bias vector.

biasRegularizer
Link copied to clipboard
open override val biasRegularizer: Regularizer? = null

Regularizer function applied to the bias vector.

depthMultiplier
Link copied to clipboard
val depthMultiplier: Int = 1

The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to numberOfChannels * depthMultiplier.

depthwiseInitializer
Link copied to clipboard
val depthwiseInitializer: Initializer

An initializer for the depthwise kernel matrix.

depthwiseRegularizer
Link copied to clipboard
val depthwiseRegularizer: Regularizer? = null

Regularizer function applied to the depthwise kernel matrix.

dilations
Link copied to clipboard
open override val dilations: IntArray

Four numbers, specifying the dilation rate to use for dilated convolution for each dimension of input tensor.

hasActivation
Link copied to clipboard
open override val hasActivation: Boolean

Returns True, if layer has internal activation function.

inboundLayers
Link copied to clipboard
var inboundLayers: MutableList<Layer>

Returns inbound layers.

kernelSize
Link copied to clipboard
open override val kernelSize: IntArray

Two long numbers, specifying the height and width of the 2D convolution window.

name
Link copied to clipboard
var name: String

Layer name. A new name is generated during model compilation when provided name is empty.

outboundLayers
Link copied to clipboard
var outboundLayers: MutableList<Layer>

Returns outbound layers.

outputShape
Link copied to clipboard
lateinit var outputShape: TensorShape

Output data tensor shape.

padding
Link copied to clipboard
open override val padding: ConvPadding

The padding method, either 'valid' or 'same' or 'full'.

paramCount
Link copied to clipboard
open val paramCount: Int

Number of parameters in this layer.

parentModel
Link copied to clipboard
var parentModel: GraphTrainableModel? = null

Model where this layer is used.

strides
Link copied to clipboard
open override val strides: IntArray

Strides of the pooling operation for each dimension of input tensor. NOTE: Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

useBias
Link copied to clipboard
open override val useBias: Boolean = true

If true the layer uses a bias vector.

variables
Link copied to clipboard
open override val variables: List<KVariable>

Variables used in this layer.