ResNet50

class ResNet50 : ONNXModels.CV<OnnxInferenceModel>

This model is a neural network for image classification that take images as input and classify the major object in the image into a set of 1000 different classes (labels are available via org.jetbrains.kotlinx.dl.api.core.util.loadImageNetClassLabels method).

This model has 50 layers with ResNetv1 architecture.

The model have

  • an input with the shape (1x3x224x224)

  • an output with the shape (1x1000)

NOTE: ResNet v2 uses pre-activation function whereas ResNet v1 uses post-activation for the residual blocks.

See also

Constructors

ResNet50
Link copied to clipboard
fun ResNet50()

Functions

model
Link copied to clipboard
open fun model(modelHub: ModelHub): OnnxInferenceModel
preInit
Link copied to clipboard
open override fun preInit(): InferenceModel
preprocessInput
Link copied to clipboard
open fun preprocessInput(imageFile: File, preprocessing: Preprocessing): FloatArray
open override fun preprocessInput(data: FloatArray, tensorShape: LongArray): FloatArray
pretrainedModel
Link copied to clipboard
open override fun pretrainedModel(modelHub: ModelHub): ImageRecognitionModel

Properties

channelsFirst
Link copied to clipboard
open override val channelsFirst: Boolean
modelRelativePath
Link copied to clipboard
open override val modelRelativePath: String