ResNet18v2
This model is a neural network for image classification that take images as input and classify the major object in the image into a set of 1000 different classes (labels are available via org.jetbrains.kotlinx.dl.api.core.util.loadImageNetClassLabels method).
This model has 18 layers with ResNetv2 architecture.
The model have
an input with the shape (1x3x224x224)
an output with the shape (1x1000)
NOTE: ResNet v2 uses pre-activation function whereas ResNet v1 uses post-activation for the residual blocks.
See also
Constructors
ResNet18v2
Link copied to clipboard
fun ResNet18v2()
Content copied to clipboard
Functions
model
Link copied to clipboard
preInit
Link copied to clipboard
preprocessInput
Link copied to clipboard
open fun preprocessInput(imageFile: File, preprocessing: Preprocessing): FloatArray
Content copied to clipboard
open override fun preprocessInput(data: FloatArray, tensorShape: LongArray): FloatArray
Content copied to clipboard
pretrainedModel
Link copied to clipboard
open override fun pretrainedModel(modelHub: ModelHub): ImageRecognitionModel
Content copied to clipboard