ResNet18
This model is a neural network for image classification that take images as input and classify the major object in the image into a set of 1000 different classes (labels are available via org.jetbrains.kotlinx.dl.api.core.util.loadImageNetClassLabels method).
This model has 18 layers with ResNetv1 architecture.
The model have
an input with the shape (1x3x224x224)
an output with the shape (1x1000)
NOTE: ResNet v2 uses pre-activation function whereas ResNet v1 uses post-activation for the residual blocks.
See also
Constructors
Functions
model
Link copied to clipboard
preInit
Link copied to clipboard
preprocessInput
Link copied to clipboard
open fun preprocessInput(imageFile: File, preprocessing: Preprocessing): FloatArray
Content copied to clipboard
open override fun preprocessInput(data: FloatArray, tensorShape: LongArray): FloatArray
Content copied to clipboard
pretrainedModel
Link copied to clipboard
open override fun pretrainedModel(modelHub: ModelHub): ImageRecognitionModel
Content copied to clipboard