kotlin-numpy / org.jetbrains.numkt.linalg / Linalg / svd

svd

fun <T : Any> svd(a: KtNDArray<T>, fullMatrices: Boolean = true, computeUV: Boolean = true, hermitian: Boolean = false): List<KtNDArray<Double>> (source)

Singular Value Decomposition.

Parameters

a - a real array with a.ndim >= 2.

fullMatrices - if True (default), u and vh have the shapes (..., M, M) and (..., N, N), respectively. Otherwise, the shapes are (..., M, K) and (..., K, N), respectively, where K = min(M, N).

computeUV - whether or not to compute u and vh in addition to s. True by default.

hermitian - if true, a is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Defaults to false.

Return
svd.