df.update { name }.asFrame { select { lastName } }
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Step 1: Update
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
DataFrame [7 x 5]
Output DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
lastName | | | | |
---|
Cooper | 15 | London | 54 | true |
Dylan | 45 | Dubai | 87 | true |
Daniels | 20 | Moscow | null | false |
Chaplin | 40 | Milan | null | true |
Marley | 30 | Tokyo | 68 | true |
Wolf | 20 | null | 55 | false |
Byrd | 30 | Moscow | 90 | true |
res.res shouldBe df.remove { name.firstName }
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
lastName | | | | |
---|
Cooper | 15 | London | 54 | true |
Dylan | 45 | Dubai | 87 | true |
Daniels | 20 | Moscow | null | false |
Chaplin | 40 | Milan | null | true |
Marley | 30 | Tokyo | 68 | true |
Wolf | 20 | null | 55 | false |
Byrd | 30 | Moscow | 90 | true |
Output DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
lastName | | | | |
---|
Cooper | 15 | London | 54 | true |
Dylan | 45 | Dubai | 87 | true |
Daniels | 20 | Moscow | null | false |
Chaplin | 40 | Milan | null | true |
Marley | 30 | Tokyo | 68 | true |
Wolf | 20 | null | 55 | false |
Byrd | 30 | Moscow | 90 | true |