df.split { name.firstName }.by { it.asIterable() }.intoRows()
Input DataFrame: rowsCount = 7, columnsCount = 5
nameagecityweightisHappy
firstNamelastName
AliceCooper15London54true
BobDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobMarley30Tokyo68true
AliceWolf20null55false
CharlieByrd30Moscow90true

Step 1: Split
nameagecityweightisHappy
split1lastName
AliceCooper15London54true
BobDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobMarley30Tokyo68true
AliceWolf20null55false
CharlieByrd30Moscow90true

Step 2: SplitWithTransform
nameagecityweightisHappy
split1split2split3split4split5split6split7lastName
AlicenullnullCooper15London54true
BobnullnullnullnullDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobnullnullnullnullMarley30Tokyo68true
AlicenullnullWolf20null55false
CharlieByrd30Moscow90true

Output DataFrame: rowsCount = 37, columnsCount = 5
nameagecityweightisHappy
firstNamelastName
ACooper15London54true
lCooper15London54true
iCooper15London54true
cCooper15London54true
eCooper15London54true
BDylan45Dubai87true
oDylan45Dubai87true
bDylan45Dubai87true
CDaniels20Moscownullfalse
hDaniels20Moscownullfalse
aDaniels20Moscownullfalse
rDaniels20Moscownullfalse
lDaniels20Moscownullfalse
iDaniels20Moscownullfalse
eDaniels20Moscownullfalse
CChaplin40Milannulltrue
hChaplin40Milannulltrue
aChaplin40Milannulltrue
rChaplin40Milannulltrue
lChaplin40Milannulltrue

... showing only top 20 of 37 rows


df.split { name }.by { it.values() }.intoRows()
Input DataFrame: rowsCount = 7, columnsCount = 5
nameagecityweightisHappy
firstNamelastName
AliceCooper15London54true
BobDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobMarley30Tokyo68true
AliceWolf20null55false
CharlieByrd30Moscow90true

Step 1: Split
split1agecityweightisHappy
firstNamelastName
AliceCooper15London54true
BobDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobMarley30Tokyo68true
AliceWolf20null55false
CharlieByrd30Moscow90true

Step 2: SplitWithTransform
split1split2agecityweightisHappy
AliceCooper15London54true
BobDylan45Dubai87true
CharlieDaniels20Moscownullfalse
CharlieChaplin40Milannulltrue
BobMarley30Tokyo68true
AliceWolf20null55false
CharlieByrd30Moscow90true

Output DataFrame: rowsCount = 14, columnsCount = 5
nameagecityweightisHappy
Alice15London54true
Cooper15London54true
Bob45Dubai87true
Dylan45Dubai87true
Charlie20Moscownullfalse
Daniels20Moscownullfalse
Charlie40Milannulltrue
Chaplin40Milannulltrue
Bob30Tokyo68true
Marley30Tokyo68true
Alice20null55false
Wolf20null55false
Charlie30Moscow90true
Byrd30Moscow90true