df.pivotMatches { city }
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Output DataFrame: rowsCount = 7, columnsCount = 5
name | age | weight | isHappy | city |
---|
firstName | lastName | | | | London | Dubai | Moscow | Milan | Tokyo | null |
---|
Alice | Cooper | 15 | 54 | true | true | false | false | false | false | false |
Bob | Dylan | 45 | 87 | true | false | true | false | false | false | false |
Charlie | Daniels | 20 | null | false | false | false | true | false | false | false |
Charlie | Chaplin | 40 | null | true | false | false | false | true | false | false |
Bob | Marley | 30 | 68 | true | false | false | false | false | true | false |
Alice | Wolf | 20 | 55 | false | false | false | false | false | false | true |
Charlie | Byrd | 30 | 90 | true | false | false | true | false | false | false |
df.pivot { city }.groupByOther().matches()
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Step 1: Pivot
Step 2: PivotGroupBy
Output DataFrame: rowsCount = 7, columnsCount = 5
name | age | weight | isHappy | city |
---|
firstName | lastName | | | | London | Dubai | Moscow | Milan | Tokyo | null |
---|
Alice | Cooper | 15 | 54 | true | true | false | false | false | false | false |
Bob | Dylan | 45 | 87 | true | false | true | false | false | false | false |
Charlie | Daniels | 20 | null | false | false | false | true | false | false | false |
Charlie | Chaplin | 40 | null | true | false | false | false | true | false | false |
Bob | Marley | 30 | 68 | true | false | false | false | false | true | false |
Alice | Wolf | 20 | 55 | false | false | false | false | false | false | true |
Charlie | Byrd | 30 | 90 | true | false | false | true | false | false | false |
df.groupBy { name }.pivotMatches { city }
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Step 1: GroupBy
Output DataFrame: rowsCount = 7, columnsCount = 2
name | city |
---|
firstName | lastName | London | Dubai | Moscow | Milan | Tokyo | null |
---|
Alice | Cooper | true | false | false | false | false | false |
Bob | Dylan | false | true | false | false | false | false |
Charlie | Daniels | false | false | true | false | false | false |
Charlie | Chaplin | false | false | false | true | false | false |
Bob | Marley | false | false | false | false | true | false |
Alice | Wolf | false | false | false | false | false | true |
Charlie | Byrd | false | false | true | false | false | false |
df.groupBy { name }.pivot { city }.matches()
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Step 1: GroupBy
Step 2: PivotGroupBy
Output DataFrame: rowsCount = 7, columnsCount = 2
name | city |
---|
firstName | lastName | London | Dubai | Moscow | Milan | Tokyo | null |
---|
Alice | Cooper | true | false | false | false | false | false |
Bob | Dylan | false | true | false | false | false | false |
Charlie | Daniels | false | false | true | false | false | false |
Charlie | Chaplin | false | false | false | true | false | false |
Bob | Marley | false | false | false | false | true | false |
Alice | Wolf | false | false | false | false | false | true |
Charlie | Byrd | false | false | true | false | false | false |
df.groupBy { name }.aggregate {
pivotMatches { city }
}
Input DataFrame: rowsCount = 7, columnsCount = 5
name | age | city | weight | isHappy |
---|
firstName | lastName | | | | |
---|
Alice | Cooper | 15 | London | 54 | true |
Bob | Dylan | 45 | Dubai | 87 | true |
Charlie | Daniels | 20 | Moscow | null | false |
Charlie | Chaplin | 40 | Milan | null | true |
Bob | Marley | 30 | Tokyo | 68 | true |
Alice | Wolf | 20 | null | 55 | false |
Charlie | Byrd | 30 | Moscow | 90 | true |
Step 1: GroupBy
Output DataFrame: rowsCount = 7, columnsCount = 2
name | city |
---|
firstName | lastName | London | Dubai | Moscow | Milan | Tokyo | null |
---|
Alice | Cooper | true | false | false | false | false | false |
Bob | Dylan | false | true | false | false | false | false |
Charlie | Daniels | false | false | true | false | false | false |
Charlie | Chaplin | false | false | false | true | false | false |
Bob | Marley | false | false | false | false | true | false |
Alice | Wolf | false | false | false | false | false | true |
Charlie | Byrd | false | false | true | false | false | false |